北京RRBSDNA甲基化经验丰富
虽然焦磷酸测序可以进行单个位点甲基化程度的精确定量,但是目前来看,测序的片段长度还比较短,只有一百多bp,其中有效长度约为60bp。以上是对几种常用的特异位点甲基化检测方法进行了介绍及比较,还有一些检测技术是在常用的检测手段上进行优化或者将不同的方法进行结合应用,比如以MSP方法为基础,发展了SMART-MSP技术,该技术利用定量技术对MSP扩增过程进行检测,同时后续结合HRM技术来分析甲基化差异。此外,利用质谱平台进行甲基化检测的有MALDI-TOF技术,可以对甲基化进行精确检测并能进行高通量筛选。从对这些技术的比较分析来看,没中检测技术都有各自的优点,并也存在一定的局限性,研究者可以根据自己的实际研究情况进行选择。在特异甲基化位点检测上,能够提供BSP、HRM及焦磷酸测序三种技术的完整的检测服务,具有丰富的经验,帮助客户加速甲基化研究进程。芯片数据如何与二代、三代数据整合。北京RRBSDNA甲基化经验丰富
联合亚硫酸氢钠的限制性内切酶分析法(COBRA):这种方法是将亚硫酸氢盐处理与酶切相结合来进行甲基化检测。DNA样本经亚硫酸氢盐处理后,利用PCR扩增。扩增产物纯化后用限制性内切酶(BstUI)消化。若其识别序列中的C发生完全甲基化(5mCG5mCG),则PCR扩增后保留为CGCG,BstUI能够识别并进行切割;若待测序列中,C未发生甲基化,则PCR后转变为TGTG,BstUI识别位点丢失,不能进行切割。这样酶切产物再经电泳分离、探针杂交、扫描定量后即可计算出原样本中甲基化的比例。这种方法**的优点就是相对简单,可进行快速定量,且需要的样本量少。然而,它的局限性也十分明显,只能获得特殊酶切位点的甲基化情况,且阴性结果并不能排除样品DNA中存在甲基化的可能。江苏6mADNA甲基化方案FFPE样本只需要室温运输。
焦磷酸测序样品要求:·样品类型细胞、新鲜组织或DNA样品·样品量细胞样品请提供至少1×106个细胞,组织样品请提供至少100mg的组织块或切片,DNA样品请提供1μg以上的DNA·样品质量基因组DNA无明显降解,主带清晰,大于23Kb,无明显弥散。OD260/280值在1.8~2.0之间,浓度≥50ng/μl·样品保存细胞样品或新鲜组织块(切成~50mg的小块)可液氮冻存后,-80℃保存。DNA样品可溶于乙醇或超纯水中,-80℃保存。样品保存期间避免反复冻融·样品运输样品置于1.5ml冻存管中,封口膜封好,干冰运输。
亚硫酸氢盐测序PCR(BSP):这种方法一度被认为是DNA甲基化分析的金标准。它的过程如下:经过亚硫酸氢盐处理后,设计引物进行PCR扩增目的片段,并对PCR产物进行克隆测序,将序列与未经处理的序列进行比较,判断CpG位点是否发生甲基化。这种方法可靠,且精确度高,能明确目的片段中每一个CpG位点的甲基化状态,但因为涉及到测序,其结果准确但要求克隆时所挑克隆较多,操作繁琐,不易大批量操作。另外,甲基化程度的定量依赖于挑选克隆的数目,因此这种方法只能算得上是一种半定量的技术方法。目前一般会先用BSP找到甲基化位点,然后根据甲基化位点设计MSP引物,进行相应PCR条件摸索,以用于大量样本的筛选。全基因组甲基化分析及特异位点甲基化检测。
恶性**细胞从**原发部位,经过淋巴道、血管或体腔等途径,到达身体其他部位继续生长,称为**转移。**转移是*****中的**障碍,也是目前**患者死亡的主要原因。近年来,临床上为了成功进行*****,对**的侵袭和转移进行了大量的研究,发现其中有很多方面和DNA甲基化相关。上皮-间质转化(epithelial mesenchymal transition, EMT)指上皮细胞向间质细胞转化的现象,研究表明EMT在**形成和转移过程中也发挥了非常重要的作用。EMT时上皮组织基本结构消失,如失去细胞间粘附和细胞极性、细胞内骨架重排等,获得间质细胞特性(如细胞迁移能力、侵袭能力、抗凋亡能力等)。EMT**初是在细胞体外培养过程中发现的,随着人们对人体**和实验动物模型的观察越来越深入,发现EMT过程与**发生过程密切相关。尤其是EMT过程对于**浸润(invasion)、转移(metastatic dissemination)以及药物耐受等都有关系,而与EMT过程相对的间质-上皮转化(mesenchymal epithelial transition, MET)过程则似乎是在**细胞播散之后形成转移灶过程中起到重要作用。甲基化验证是甲基化研究必不可少的一环。上海oxBSDNA甲基化服务
云生物提供测序服务。北京RRBSDNA甲基化经验丰富
上皮型钙黏附素(E-cadherin)是介导细胞间粘附的一种跨膜糖蛋白,其编码基因CDH-1属于**侵袭转移抑制基因。在**组织中,E-cadherin表达的下调或沉默可导致细胞间相互黏附力减弱,造成**细胞的分散,脱离原发灶处而转移。而E-cadherin下调的因素之一就是其启动子区域CpG岛的超甲基化。**细胞突破血管内皮及基底膜进入血循环是**细胞侵袭和转移的重要步骤。基底膜组成蛋白Nidogen的缺失将严重影响基底膜的完整性,有利于**细胞顺利通过进入血循环进而发生侵袭转移。有研究表明,Nidogen基因启动子在**细胞中表现出很高的甲基化水平,而在正常细胞中却极少或没有发生甲基化。另外,某些miRNA(如MiR-148a、miR-34b/c、miR-9)能够起到抑制**细胞生长和转移的作用,而在**细胞中,这些miRNA通常由于发生超甲基化而沉默。北京RRBSDNA甲基化经验丰富