生产氧化石墨纳米材料
多层氧化石墨烯(GO)膜在不同pH水平下去除水中有机物质的系统性能评价和机理研究。该研究采用逐层组装法制备了PAH/GO双层膜,对典型单价离子(Na+,Cl-)和多价离子(SO42-,Mg2+)以及有机染料(亚甲蓝MB,罗丹明R-WT)和药物和个人护理品(三氯生TCS,三氯二苯脲TCC)在反渗透膜系统中通过GO膜的行为进行研究。结果发现,在pH=7时,无论其电荷、尺寸或疏水性质如何,GO膜能够高效去除多价阳离子/阴离子和有机物,但对于单价离子的去除率较低。传统的纳滤膜通常带负电,且只能去除带有负电荷的多价离子和有机物。随着pH的变化,GO膜的关键性质(例如电荷,层间距)发生***变化,导致不同的pH依赖性界面现象和分离机制,一些有机物(例如三氯二苯脲)的分子形状由于这种有机物与GO膜的碳表面的迁移性和π-π相互作用而极大地影响了它们的去除。氧化石墨片层的边缘包括羰基或羧基。生产氧化石墨纳米材料

随着材料领域的扩张,人们对于材料的功能性需求更为严苛,迫切需要在交通运输、建筑材料、能量存储与转化等领域应用性质更加优良的材料出现,石墨烯以优异的声、光、热、电、力等性质成为各新型材料领域追求的目标,作为前驱体的GO以其灵活的物理化学性质、可规模化制备的特点更成为应用基础研究的热电。虽然GO具有诸多特性,但是由于范德华作用以及π-π作用等强相互作用力,使GO之间很容易在不同体系中发生团聚,其在纳米尺度上表现的优异性能随着GO片层的聚集***的降低直至消失,极大地阻碍了GO的进一步应用。生产氧化石墨纳米材料氧化石墨能够满足人们对于材料的功能性需求更为严苛的要求。

石墨烯是一种在光子和光电子领域十分有吸引力的材料,与别的材料相比有很多优点[1]。作为一种零带隙材料,石墨烯的光响应谱覆盖了从紫外到THz范围;同时,石墨烯在室温下就有着惊人的电子输运速度,这使得光子或者等离子体转换为电流或电压的速度极快;石墨烯的低耗散率以及可以把电磁场能量限定在一定区域内的性质,带来了很强的光与石墨烯相互作用。虽然还原氧化石墨烯(RGO)缺少本征石墨烯中观测到的电子输运效应以及其它一些凝聚态物质效应,但其易于规模化制备、性质可调等优异特性,使其在传感检测领域展现出极大的应用前景。
Su等人28利用氢碘酸和抗坏血酸对PET基底上的多层氧化石墨烯薄膜进行化学还原,得到30nm厚的RGO薄膜,并测试了其渗透性能。实验发现,对He原子和水分子完全不能透过。而厚度超过100 nm的RGO薄膜对几乎所有气体、液体和腐蚀性化学试剂(如HF)是高度不可渗透的。特殊的阻隔性能归因于石墨烯层压板的高度石墨化和在还原过程中几乎没有结构损坏。与此结果相反,Liu等人29已经证明了通过HI蒸气和水辅助分层制备**式超薄rGO膜的简便且可重复的方法,利用rGO膜的毛细管力和疏水性,通过水实现**终的分层。采用真空抽滤在微孔滤膜基底上制备厚度低至20nm的**式rGO薄膜。减少面内难以修复的孔洞,从而提升还原石墨烯的本征导电性。

氧化石墨烯(GO)表面有羟基、羧基、环氧基、羰基等亲水性的活性基团,且片层间距较大,使得氧化石墨烯具有超大比表面积和***的离子交换能力。GO的结构与水通蛋白相类似,而蛋白质本身具有优异的离子识别功能,由此可推断氧化石墨烯在分离、过滤及仿生离子传输等领域可能具有潜在的应用价值1-3。GO经过超声可以稳定地分散在水中,再通过传统成膜方法如旋涂、滴涂和真空抽滤等处理后,GO微片可呈现肉眼可见的层状薄膜堆叠,在薄膜的层与层之间形成具有选择性的二维纳米通道。 除此之外,GO由于片层间存在较强的氢键,力学性能优异,易脱离基底而**存在。基于GO薄膜制备方法简单、成本低、高通透性和高选择性等优点,其在水净化领域具有广阔的应用空间。氧化石墨正式名称为石墨氧化物或被称为石墨酸,是一种由物质量之比不定的碳、氢、氧元素构成的化合物。绿色氧化石墨产品介绍
关于GO与水泥基复合材料的作用机制,研究者也有不同的观点,目前仍没有定论。生产氧化石墨纳米材料
氧化石墨烯(GO)是一种两亲性材料,在生理条件中一般带有负电荷,通过对GO的修饰可以改变电荷的大小,甚至使其带上正电荷,如利用聚合物或树枝状大分子等聚阳离子试剂。在细胞中,GO可能会与疏水性的、带正电荷或带负电荷的物质进行相互作用,如细胞膜、蛋白质和核酸等,因此会诱导GO产生毒性。因此在本节中,我们主要探讨GO在细胞(即体外)和体内试验中产生已知的毒性效应,以及产生毒性的可能原因。石墨烯材料的结构特点主要由三个参数决定:(a)层数、(b)横向尺寸和(c)化学组成即碳氧比例)。生产氧化石墨纳米材料