官能化氧化石墨烯研发
材料应用范围很广。氧化石墨烯是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。氧化石墨烯复合材料包括聚合物类复合材料以及无机物类复合材料更是具有广泛的应用领域,因此氧化石墨烯的表面改性成为另一个研究重点。石墨烯通常可由氧化石墨烯还原得到,其主要的制备方法有机械剥离法、化学还原法、溶剂热还原法、光催化还原法、化学气相沉积法等。其中,化学还原法由于具有成本低、工艺简单易控等特点而备受科研工作者的推崇。目前,用于制备还原氧化石墨烯或石墨烯的化学还原剂主要有钠与硼氢化钠混合液、硼氢化钠和硫酸混合液、氢碘酸、氢碘酸与乙酸混合液,钠-氨,对苯二酚,维生素C-氨基酸,L-对抗坏血酸,锌粉,铝粉,铁,碱,水合肼,二甲基肼,硫化氢以及氢化钠等。然而,在利用这些还原剂的过程中,高温、大量有机溶剂以及有毒药品的使用限制了大规模生产还原氧化石墨烯。因此,开发一种简单易行、反应条件温和、生产成本低、环境友好型的还原氧化石墨烯的方法是十分必要的。石墨烯极少添加量可改善材料力学性能。官能化氧化石墨烯研发

石墨是由大量碳原子组成的六角环形网状结构的多层叠合体,因层问结合能只有5.4kJ/tool,故在一定的外力作用下易被剥离,而剥离出的石墨单层结构即为石墨烯。20世纪3O年代,Landau和Peierls等ll提出二维晶体是热力学不稳定的,在常温常压下易分解。因此,传统理论认为石墨烯只是一个理论结构,实际中无法单独存在。直到2004年,英国科学家Geim等打破了“二维晶体无法在非***零度稳定存在”的认知,采用微机械剥离法在高定向热解石墨(HoPG)上反复剥离,**终成功制备并观察到单层石墨烯。化工氧化石墨烯浆料石墨烯环氧树脂由石墨烯与环氧树脂原位聚合制备得到,有效解决了石墨烯分散的难题。

当今世界面临着严峻的环境与能源挑战。传统能源如煤、石油的不断消耗以及环境的日益恶化严重影响了人类的日常生活以及社会的正常发展。因而开发更为高效与环境友好的能源设备越来越得到人们的强烈关注。为**的初代锂离子二次电池以其在能量密度与操作电压上明显优于传统铅酸与镍镉电池的优势,迅速应用于便携电子设备电池市场。其后,随着具有环境友好、成本低廉、循环性能稳定等诸多优势的以磷酸铁锂为**的正极材料的报道[6,7],锂离子二次电池的应用也扩展到混合动力汽车与纯电动汽车领域。然而目前锂离子电池电极材料还存在着诸多问题,如较低的电子电导率与锂离子迁移效率、嵌脱锂过程中巨大的体积变化、电极材料与电解液的副反应造成的容量损失以及活性物质不可逆的结构变化制约材料的循环稳定性等。另外,由于目前常用的锂离子电池正极材料固有的理论容量限制,实际应用的锂离子电池的比能量密度很难突破250Wh/kg[8],因而难以满足其在高比能量电池领域的长远发展。在这种背景下,锂硫电池作为一种新的电化学储能体系,以其超高的理论能量密度(2600Wh/kg)以及单质硫储量丰富、环境友好的特点,成为高比能二次电池的研究热点。
除了可以将太阳能转换为热能存储之外,石墨烯相变材料也可以将电能转换为热能存储。Wang[65]等人通过冰模板法制备了石墨烯纳米片(GNP)气凝胶,然后与石蜡复合得到相变复合材料,具有高导热性、较好的形状稳定性和热稳定性,当GNP含量为4.1wt%时热导率可达到1.42Wm-11C1。此外,当电压为5V时,流经样品的电流约为1.18A,此时温度迅速升高,证实了其出色的电热转换能力。Li[66】等人将气相扩散法和溶胶-凝胶法相结合,通过超临界C02干燥和热退火过程,制备了具有各向异性网络的三维石墨烯气凝胶,导热率和导电率分别高达1.71士0.2Wnr11C1和341.3Snr1。其相变复合材料在施加1?3V的电压时,电-热转换效率比较高可以达到85%。这项工作能够为开发智能的电-热转换及存储系统提供理论基础,并证明了石墨烯相变复合材料在电子设备、太阳能存储利用、热管理系统等领域具备的潜力。石墨烯导电浆料中分散有少层石墨烯,可以作为电池正极导电剂。

常州第六元素材料科技股份有限公司拥有石墨的深度插层和高解离率的制备技术、氧化石墨的高效纯化技术、石墨烯微片的缺陷修复/比表面可控技术、全行业**的回收/循环氧化技术等自主知识产权。自主设计的生产线已成功实现了石墨烯产品低成本规模化制备,在技术、工艺、设备等方面获多项突破,产品具有比表面积大、导电性优异、分散度好和优良复合功能等特点。目前年产1400吨的氧化石墨(烯)/100吨石墨烯粉体生产线已投产运行,该生产线拥有完全的自主知识产权,且石墨烯产品质量好、成本低,达国际**水平,具有极强的市场竞争力。石墨烯环氧树脂应用于重防腐涂料、导电涂料、粉末涂料以及胶粉剂等领域。化工氧化石墨烯浆料
利用氧化石墨烯制备的石墨烯导热膜,导热系数高。官能化氧化石墨烯研发
溶剂热法是指在特制的密闭反应器(高压釜)中,采用有机溶剂作为反应介质,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中自身产生高压而进行材料制备的一种有效方法。溶剂热法解决了规模化制备石墨烯的问题,同时也带来了电导率很低的负面影响。为解决由此带来的不足,研究者将溶剂热法和氧化还原法相结合制备出了高质量的石墨烯。Dai等发现溶剂热条件下还原氧化石墨烯制备的石墨烯薄膜电阻小于传统条件下制备石墨烯。溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点越来越受科学家的关注。溶剂热法和其他制备方法的结合将成为石墨烯制备的又一亮点。石墨烯的制备方法还有高温还原、光照还原、外延晶体生长法、微波法、电弧法、电化学法等。笔者在以上基础上提出一种机械法制备纳米石墨烯微片的新方法,并尝试宏量生产石墨烯的研究中取得较好的成果。如何综合运用各种石墨烯制备方法的优势,取长补短,解决石墨烯的难溶解性和不稳定性的问题,完善结构和电性能等是今后研究的热点和难点,也为今后石墨烯的制备与合成开辟新的道路。 官能化氧化石墨烯研发
上一篇: 应该怎么做氧化石墨商家
下一篇: 河南石墨烯有哪些