新型氧化石墨性能

时间:2023年12月10日 来源:

目前医学界面临的一个棘手的难题是对大面积骨组织缺损的修复。其中,干细胞***可能是一种很有前途的解决方案,但是在干细胞的移植过程中,需要可促进和增强细胞成活、附着、迁移和分化并有着良好生物相容性的支架材料。研究已表明氧化石墨烯(GO)具有良好的生物相容性及较低的细胞毒性,可促进成纤维细胞、成骨细胞和间充质干细胞(mesenchymal stem cells,MSC)的增殖和分化[82],同时GO还可以促进多种干细胞的附着和生长,增强其成骨分化的能力[83-84]。因此受到骨组织再生领域及相关领域研究人员的关注,成为组织工程研究中一种很有潜力的支架材料。GO不仅可以单独作为干细胞的载体材料,还可以加入到现有的支架材料中,GO不仅可以加强支架材料的生物活性,同时还可以改善支架材料的空隙结构和机械性能,包括抗压强度和抗曲强度。GO表面积及粗糙度较大,适合MSC的附着和增殖,从而可促进间充质干细胞的成骨分化,而这种作用程度与支架中加入GO的比例成正比。氧化石墨是一种碳、氧数量之比介于2.1到2.9之间黄色固体,并仍然保留石墨的层状结构,但结构更复杂。新型氧化石墨性能

新型氧化石墨性能,氧化石墨

解决GO在不同介质中的解理和分散等问题是实现GO广泛应用的重要前提。此外,不同的应用体系往往要不同的功能体现和界面结合等特征,故而要经常对GO表面进行修饰改性。GO本身含有丰富的含氧官能团,也可在GO表面引入其他功能基团,或者利用GO之间和GO与其它物质间的共价键或非共价键作用进行化学反应接枝其他官能团。由于GO结构的不确定性,以上均属于一大类复杂的GO化学,导致采用化学方式对GO进行修饰与改性机理复杂化,很难得到结构单一的产品。尽管面临诸多难以解释清楚的问题,但是对GO复合材料优异性能的期望使得非常必要总结对GO进行修饰改性的常用方法和技术,同时也是氧化石墨烯相关材料应用能否实现稳定、可控规模化应用的关键。新型氧化石墨性能氧化石墨烯(GO)是印刷电子、催化、储能、分离膜、生物医学和复合材料的理想材料。

新型氧化石墨性能,氧化石墨

氧化石墨烯/还原氧化石墨烯在光电传感领域的应用,其基本依据是本章前面部分所涉及到的各种光学性质。氧化石墨烯因含氧官能团的存在具备了丰富的光学特性,在还原为还原氧化石墨烯的过程中,不同的还原程度又具备了不同的性质,从结构方面而言,是其SP2碳域与SP3碳域相互分割、相互影响、相互转化带来了如此丰富的特性。也正是这些官能团的存在,使得氧化石墨烯可以方便的采用各种基于溶液的方法适应多种场合的需要,克服了CVD和机械剥离石墨烯在转移和大面积应用时存在的缺点,也正是这些官能团的存在,使其便于实现功能化修饰,为其在不同场景的应用提供了一个广阔的平台。

石墨烯是一种在光子和光电子领域十分有吸引力的材料,与别的材料相比有很多优点[1]。作为一种零带隙材料,石墨烯的光响应谱覆盖了从紫外到THz范围;同时,石墨烯在室温下就有着惊人的电子输运速度,这使得光子或者等离子体转换为电流或电压的速度极快;石墨烯的低耗散率以及可以把电磁场能量限定在一定区域内的性质,带来了很强的光与石墨烯相互作用。虽然还原氧化石墨烯(RGO)缺少本征石墨烯中观测到的电子输运效应以及其它一些凝聚态物质效应,但其易于规模化制备、性质可调等优异特性,使其在传感检测领域展现出极大的应用前景。氧化石墨片层的边缘包括羰基或羧基。

新型氧化石墨性能,氧化石墨

GO的载药作用也可促进间充质干细胞的成骨分化。如用携带正电荷NH3+的GO(GO-NH3+)和携带负电荷COOH-的GO(GOCOOH-)交替层叠使其**外层为GO-COOH-,以这种GO作为载体,携带骨形态发生蛋白-2(BMP-2)和P物质(SP)附着到钛(Ti)种植体上,结果以Ti为基底,表面覆盖GO-COOH-,携带BMP-2和SP(Ti/GO-/SP/BMP-2)种植体周围的新骨生成量要明显多于Ti/SP/BMP-2、Ti/GO-/BMP-2、Ti/GO-/SP。这证明GO可以同时携带BMP-2和SP到达局部并缓慢释放,增加局部BMP-2和SP的有效剂量且发挥生物活性作用[89,90]。GO的这种双重携带传递作用在口腔种植及骨愈合方面起着重要的作用。而体内羟磷灰石(hydroxyapatite,HA)是一种常用于骨组织修复的磷酸钙陶瓷类材料。在HA中加入GO,可以增强其在钛板表面的附着强度;以HA为基底,表面覆盖GO的复合物(GO/HA)表现出比纯HA更高的抗腐蚀性能,细胞活性也更强。静电作用的强弱与氧化石墨烯表面官能团产生的负电荷相关。单层氧化石墨导电

当超过某上限后氧化石墨烯量子点的性质相当接近氧化石墨烯。新型氧化石墨性能

与石墨烯量子点类似,氧化石墨烯量子点也具备一些特殊的性质。当GO片径达到若干纳米量级的时候将会出现明显的限域效应,其光学性质会随着片径尺寸大小发生变化[48],当超过某上限后氧化石墨烯量子点的性质相当接近氧化石墨烯,这就提供了一种通过控制片径尺寸分布改变氧化石墨烯量子点光响应的手段。与GO类似,这种pH依赖来源于自由型zigzag边缘的质子化或者去质子化。同样,这也可以解释以GO为前驱体通过超声-水热法得到的石墨烯量子点的光发射性能,在蓝光区域其光发射性能取决于zigzag边缘状态,而绿色的荧光发射则来自于能级陷阱的无序状态。通过控制氧化石墨烯量子点的氧化程度,可以控制其发光的波长。这一类量子点的光学性质类似于GO,这说明只要片径小于量子点,都会产生同样的光学效应,也就是在结构上存在一个限域岛状SP2杂化的碳或者含氧基团在功能化过程中引入的缺陷状态。新型氧化石墨性能

信息来源于互联网 本站不为信息真实性负责