NMR水泥基材料-土壤-岩芯等多孔介质原理

时间:2024年12月24日 来源:

纵向弛豫(T1)和横向弛豫(T2)是由质子之间的磁相互作用引起的。从原子的角度来看,当一个进动的质子系统将能量传递给周围环境时,弛豫就发生了。供体质子弛豫到它的低能态,在低能态中质子沿着B0的方向进动。同样的转移也有助于T2弛豫。此外,消相有助于T2松弛,而不涉及向周围环境转移能量。因此,横向弛豫总是比纵向弛豫快;因此,T2总是小于等于T1。·对于固体中的质子,T2比T1小得多。·对于流体中的质子:(1)当流体处于均匀静磁场时,T1近似等于T2。(2)当流体处于梯度磁场并采用CPMG测量过程时,T2小于T1,其差异主要受磁场梯度、回波间距和流体扩散率的控制。当润湿流体填充多孔介质(如岩石)时,T1和T2都急剧减小,并且弛豫机制不同于固体或流体中的质子。多孔介质的研究有助于优化工程设计和降低工程成本。NMR水泥基材料-土壤-岩芯等多孔介质原理

NMR水泥基材料-土壤-岩芯等多孔介质原理,水泥基材料-土壤-岩芯等多孔介质

MAGMED Cores HP20L 非常规岩芯核磁共振分析仪应用领域 非常规岩芯核磁共振分析静态测量参数 1)总体孔隙度及有效孔隙度; 2)油水气饱和度; 3)总体有机质含量(TOC ); 4)可动与不可动(固体)有机质含量; 5)岩芯经过其他处理前后对比; 非常规岩芯核磁共振分析动态测量参数 1)天然气在岩芯中的各种状态(自由气、孔隙气、凝结气); 2)可动与不可动(固体)有机质随温度和压力的变化; 3)岩芯中油和水的温度压力特性; 4)液体驱替对岩芯的影响; 5)产油和产气过程的实时模拟检测; 6)岩芯在驱替过程中渗透率的变化;核磁共振水泥基材料-土壤-岩芯等多孔介质检测设备核磁共振测量方法一类是测量非均匀磁场中不同时间产生的回波串的信号衰减包络。

NMR水泥基材料-土壤-岩芯等多孔介质原理,水泥基材料-土壤-岩芯等多孔介质

对于水泥中的结晶水,主要来自于水泥水化过程的产生的微晶相氢氧化钙中的羟基信号、钙矾石中的结晶水信号,其T2弛豫时间非常短~10us左右。常规的T1-T2测量方法能够重聚由于化学位移各向异性、潜在的磁场不均匀性以及异核偶极耦合相互作用造成的磁化损失,对于氢氧化钙中同核偶极耦合作用造成的信号损失无能为力,因此常规T1-T2测量方法检测到水泥基材料中的固体信号比较困难。而固体回波可以重聚氢氧化钙中孤立的1/2自旋对产生的同核偶极耦合作用造成的信号损失,因而可以检测到水泥基材料中的固体信号。我们将多固体回波序列用于T1-T2弛豫测量,多固体回波序列(图1)由标准二维弛豫序列结合固体回波组成。目前,该二维脉冲序列测量方法已用于岩芯、矿物等多孔介质材料。我们将二维固体脉冲测量方法应用于水泥样本的研究中,目的是使用低场核磁共振技术获得更完整的水泥材料中的固体信号。

水泥基材料的水化包括四个阶段: 反应期、诱导期、加速期和减速期。水泥浆体的 T1 ( 纵向弛豫时间) 和 T2 ( 横向弛豫时间) 随着水化的进行而逐渐减小,其中T1 能够反映水泥水化的不同阶段,对水泥基材料孔结构的研究主要有三个方面的指标: 孔隙率、孔尺度分布和孔比表面积, 常用的方法是压汞法和气体吸附法,在研究过程中,这两种方法均需将样品进行预先干燥,这很容易导致样品中的微孔结构遭到破坏,而且不能对同一个样品进行连续测试,难以得到孔结构连续变化的特征。而核磁共振技术可在非破坏条件下,可以连续测试水泥基材料的孔结构的变化,极大地促进水泥基材料的研究。多孔介质中水分和气体的传输是研究的重要内容。

NMR水泥基材料-土壤-岩芯等多孔介质原理,水泥基材料-土壤-岩芯等多孔介质

水泥水化反应几分钟后,核磁共振纵向弛豫时间分布呈现两个峰,一个是在100ms附近,反映水泥颗粒周围自由水的弛豫信息;另一个是在2ms附近,反映水泥凝结之前包裹在絮凝结构中水的弛豫信息。研究发现,水泥水化进程中极长弛豫时间随时间的变化呈现出5个阶段,正好与水泥水化反应的初始反应、诱 导期、加速期、减速期和稳定期相对应。 通过质子横向弛豫来反映白水泥浆体的水化进程,发现从加水开始15min到200h,水泥浆体水化过程中出现5种不同的自旋质子群。研究中用自旋-自旋弛豫时间和信号量百分比来表征不同种类的自旋质子群,以此来监测水泥浆体的水化进程,观测研究结果与通过其它途径测得的结果呈现良好一致性,证明了用核磁共振来研究水泥水化的可靠性。水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可用于岩芯弛豫时间T1和T2、T1-T2 二维分布检测。TD-NMR水泥基材料-土壤-岩芯等多孔介质原理

江苏麦格瑞电子科技有限公司积极探索磁共振应用创新。NMR水泥基材料-土壤-岩芯等多孔介质原理

岩石和土体是天然形成的多孔介质材料,其内部有大量不规则、多尺度的孔隙,并且还存在不同状态和不同数量的水分。由于土体和岩体的力学性质、工程的施工方法、及其边坡的安全稳定与其中水分和孔隙的变化息息相关,岩土体中的水分变化和孔隙变化对整个结构的力学性质有着很大的影响,因此,掌握岩土体中孔隙结构及水分变化对工程非常重要。核磁共振技术是一种可以测得多孔介质的微观结构及其内部水分分布状态的先进技术,在研究水和孔隙的变化上有突出贡献,对提高工程安全和工程质量非常有帮助。NMR水泥基材料-土壤-岩芯等多孔介质原理

信息来源于互联网 本站不为信息真实性负责