高精度TD-NMR非常规岩芯液体驱替对岩芯影响

时间:2024年02月20日 来源:

页岩油和致密油聚集机理的重要是“致密化减孔聚集”或称为“致密化成藏”,页岩系统依靠压实、成岩等使孔隙减小,实现自身封闭聚集油气,揭示两者聚集机理,直接决定各自地质特征和分布规律。 “原位滞留聚集”或“原位成藏”是页岩油聚集机理,包括泥页岩中烃类释放和烃类排出两个过程,液态烃释放受干酪根物理性质、热成熟度、网络结构等控制,液态烃排出受岩性组合、有效运移通道、压力分布及微裂缝发育程度等控制,流体压力、有机质孔和微裂缝的发育和耦合关系,决定着页岩油的动态集聚与资源规模。当润湿流体填充多孔介质(如岩石)时,T1和T2都急剧减小,并且弛豫机制不同于固体或流体中的质子。高精度TD-NMR非常规岩芯液体驱替对岩芯影响

高精度TD-NMR非常规岩芯液体驱替对岩芯影响,非常规岩芯

致密油与页岩油均无明显圈闭界限,无自然工业产能,需要采用直井缝网压裂、水平井体积压裂、空气与CO2 等气驱、纳米驱油剂等方式进行开发,形成“人造渗透率”,持续获得产能,属典型“人造油气藏”。) 。通过整理国内外有关致密油与页岩油研究进展,笔者认为二者在地质、开发、工程等方面均存在明显差异,应定义为 2 种不同类型的非常规岩芯油气资源。 页岩油是指成熟或低熟烃源岩已生成并滞留在页岩地层中的石油聚集,页岩既是生油岩,又是储集岩,石油基本未运移( 图 1) ,属原地滞留油气资源,是未来非常规岩芯石油发展的潜在领域。氢核磁核磁共振非常规岩芯液体饱和度检测非常规岩芯储层有致密油、致密气、页岩油、页岩气、煤层气、重油沥青、天然气水合物等。

高精度TD-NMR非常规岩芯液体驱替对岩芯影响,非常规岩芯

致密油成为全球非常规岩芯石油勘探开发的亮点领域,通过解剖国内外致密油实例,可归纳出以下地质特征: 致密碳酸盐岩、致密砂岩为2类主要储集层。储集层物性差,基质渗透率低,空气渗透率多小于或等于1×10-3μm2,孔隙度小于或等于12% ,受有利沉积相带控制。 富油气凹陷内致密油源储共生。圈闭界限不明显,高质量生油岩区致密油大面积连续分布,一般TOC≥2%。 油气以短距离运移为主。持续充注,非浮力聚集,油层压 力系数变化大、油质轻; 一般生油岩成熟区( 0.6%≤Ro≤1.3% ) 气油比高,初期易高产。

致密油“甜点区”评价参数包括烃源岩特性、岩性、物性、脆性、含油气性与应力各向异性等“六特性”特征参数。依据致密油“六特性”各项评价参数标准,将各参数叠合成图,取所有评价参数标准以上的区域,确定为致密油“甜点区”。常规岩芯油气藏评价,着力研究“圈闭是否成藏”,重要评价“生、储、盖、圈、运、保”六要素及其匹配关系,重点评价高质量烃源灶、有利储集体、圈闭规模及有效的输导体系。克拉 2 气田和大庆长垣油田是典型实例。达西进行了水通过饱和砂的实验研究,发现了渗流量Q与上下游水头差和垂直于水流方向的截面积A成正比。

高精度TD-NMR非常规岩芯液体驱替对岩芯影响,非常规岩芯

非常规岩芯油气储层与常规岩芯油气储层的差异决定了储层中油气赋存状态、运移方式、流动机理以及含油气性等多个方面,但归根到底,储层致密、孔喉小、微观结构复杂是非常规岩芯油气储层与常规岩芯油气储层的本质差异 。 非常规岩芯储层呈现低速非达西渗流特征,存在启动压力梯度;渗流曲线由平缓过渡的两段组成,较低渗流速度下的上凹型非线性渗流曲线和较高流速下的拟线性渗流曲线,渗流曲线主要受岩芯渗透率的影响,渗透率越低,启动压力梯度越大,非达西现象越明显。需要人工压裂注气液,增加驱替力,形成有效开采的流动机制。不同tw值会产生不同的T2分布。在这种情况下,采用T1加权机制来区分碳氢化合物和水。小核磁共振非常规岩芯弛豫信号

核磁共振技术在20世纪60年代引起石油工业的兴趣,研究结果显示核磁共振技术具有良好的渗透率相关性。高精度TD-NMR非常规岩芯液体驱替对岩芯影响

随着世界油气工业勘探开发领域从常规岩芯油气向非常规岩芯油气延伸,非常规岩芯油气的勘探和研究日益受到重视。非常规岩芯油气与常规岩芯油气在基本概念、学科体系、地质研究、勘探方法、“甜点区”评价、技术攻关、开发方式与开采模式等 8 个方面有本质区别。非常规岩芯油气与常规岩芯油气地质学的理论基础,分别是连续型油气聚集理论和浮力圈闭成藏理论。非常规岩芯油气有两个关键标志:一是油气大面积连续分布,圈闭界限不明显,二是无自然工业稳定产量,达西渗流不明显;两个关键参数为:一是孔隙度小于 10%,二是孔喉直径小于 1μm 或空气渗透率小于 1mD。高精度TD-NMR非常规岩芯液体驱替对岩芯影响

信息来源于互联网 本站不为信息真实性负责