无锡POSITALOCD58-SS12121编码器防爆性能
那么如何使用编码器才能知道“旋转方向”,“旋转位置”,“旋转速度”呢?本次就用透光型编码器做一个简要说明。透光型编码器主要由四部分结构构成——①LED发光素子;②透镜;③码盘;④受光IC。首先LED发光素子的光是错乱光。通过透镜将光集中在一起并转化成平行光。码盘上等分地开通若干个长方形孔(有通光也有不通光)。射到受光IC上的发光二极管等电子元件上,通过信号转换电子部进行处理,结果输出“A相”,“B相”两种方波。A相同B相的相位关系是世界通用的,B相同A相相差1/4周期输出。通过处理A相与B相这两种编码器输出,就能够清楚电机的旋转方向,旋转位置以及旋转速度。那么下面我们就讲讲如何将他们检测出来的。一个编码器的性能一般由分辨率来描述,而非测量精度。无锡POSITALOCD58-SS12121编码器防爆性能

绝对值编码器信号不怕干扰,停电数据不会丢失,PLC对于绝对值编码器无需时刻计数,对于CPU扫描无需计算中断时间并节省CPU资源,尤其是现在绝对值编码器的市场价格大幅度下降,同时因数据可靠性的提高,对于使用绝对值编码器可节省调试时间,减少售后服务成本,实际使用效果及性价比已远优于选用增量型编码器,在PLC位置定位中已有越来越多的用户倾向于使用绝对值编码器。由于S7-1200的经济性,与绝对值编码器的连接优先较为经济和方便的4—20mA信号接口,西门子S7-1200加SM1231模拟量模块,可直接连接2个带有4—20mA输出接口的绝对值编码器。无锡POSITALOCD58-SS12121编码器防爆性能编码器使用的通信协议有很多种,例如EnDat、BiSS、HIPERFACE和Tamagawa。

绝dui编码器由机械位置决定的每个位置的优势性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性很好提高了。由于绝dui编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝dui型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝dui编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝dui型编码器串行输出好常用的是SSI(同步串行输出)。
测出编码器输出的脉冲频率和编码器分辨率,再根据下方公式很容易就能算出编码器的速度。转速(r/min)=(脉冲频率/分辨率)*60。灵活运用编码器就可以控制电机的旋转方向、旋转位置、旋转速度。还是用之前提到的电梯那个例子,如图4微处理器发出控制信号驱动电机,安装在电机轴上的编码器输出信号。之后用编码器计数器处理编码器输出,同微处理器的控制信号进行差动比较。通过比较驱动电机的控制信号和电机旋转的结果,只向电机提供目标转数所需要的电量。在这种封闭结构中进行比较演算的形态,我们称之为闭合回路(闭环)。 绝对值编码器在多位数输出型,一般均选用串行输出或总线型输出。

上面说到有两组光电变换器输出信号,图中的A和B就是输出的两组电压信号,属于两路正交脉冲。图中的Z是一路零脉冲,它的作用是用来校正每转编码器产生的脉冲个数,将误差控制在每转之内,避免积累误差的产生。区别电机转子旋转方向,根据A和B这两路脉冲信号相位来判断电机转子是正转还是反转。但增量式编码器有优点也有缺点,优点是实现小型化容易、结构简单、响应速度快,缺点是掉电后容易丢数据,还容易积累误差。综上所述,可利用增量式编码器用于电机转子转速及转子初始位置等检测。 提供针对工业自动化产品的电子电气和机械方案的研发服务。石家庄POSITALOCD58-32025-S201编码器现货销售
绝对值编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。无锡POSITALOCD58-SS12121编码器防爆性能
旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。无锡POSITALOCD58-SS12121编码器防爆性能