天津影视虚拟现实实时动捕技术

时间:2021年02月26日 来源:

即人们可以通过视觉、听觉、触觉等信息通道感受到设计者思想的高级用户界面。硬件平台由于虚拟世界本身的复杂性及计算实时性的要求,产生虚拟环境所需的计算量极为巨大,这对中心计算机的配置提出了极高的要求。目前,国外的VR系统一般配有SGI或SUN工作站[1],大型的VR系统,采用的是计算机并行处理系统。当前的研究趋于桌面虚拟现实系统,它价格较低、易于实现同时又能满足VR的部分特征要求,因而将会得到更为***的应用。软件系统软件系统是实现VR技术应用的关键。VR技术在国外的应用比国内早,目前具有**性的桌面VR技术有Web3D中的X3D、VRML、Java3D、Cult3DViewpoint、Atmosphere,以及应用于服务器上的SuperscapeVRT、EAISense8WorldToolKit、MPIVega等,它们为VR技术在虚拟医学系统中应用提供4了工具。4VR技术与医学训练VR技术改变了人机交互的被动方式,对传统的教学模式、教学手段和教学方法产生了深刻影响,在医学领域,VR技术作为有效的训练工具正在顺利发展。主要的应用包括虚拟解剖学、虚拟实验室和虚拟手术等。人体解剖学是最基础的医学知识,不但医学生要学,而且执业医师也要经常复习。虚拟人体解剖将人体用特制机器切成薄片(最薄可以达到~)[2]。这些现象可以是现实中真真切切的物体,也可以是我们肉眼所看不到的物质,通过三维模型表现出来。天津影视虚拟现实实时动捕技术

定位精度高:在VR领域,超高的定位精度意味着***的沉浸感。激光定位方案的精度可以达到mm级别,也就成就了HTC我们体验到的非常好的震撼的感觉。四、可见光定位技术相比二、三两种解决方案,此类解决方案的价钱可就便宜多了,精度相对来说也低了很多,而且受自然光的影响也比较大。和红外定位相似,可见光定位的方案也是用摄像头拍摄室内场景,但是被追踪点不是用反射红外线的材料,而是主动发光的标记点(类似小灯泡)。不同的定位点用不同颜色进行区分。正是因为这种特性,可追踪点的数量也非常有限。然而其算法简单、价格便宜、容易扩展的特性,使它成为了目前VR市场上相对比较普及的定位方案。TheVoid,澳洲的ZeroLatency和很多国内的线下VR体验店目前都采用的这种方案。五、低功耗蓝牙定位(iBeacons定位)iBeacons是苹果公司2013年9月发布的移动设备用的操作系统配备的新功能。它的基本原理简单的说,就是利用有低功耗蓝牙(BLE)通信功能的设备(iPhone手机或其他设备)向周围发送自己特有的ID,接收到该ID的应用软件会根据其携带的信息采取一些动作。比如,在构建有iBeacon的商场,用户带着iPhone,走到某个商户门前,就会自动弹出这个商户相应的促销信息。游戏虚拟现实二次元偶像虚拟环境的建立是VR系统的**内容,目的就是获取实际环境的三维数据,应用的需要建立相应的虚拟环境模型。

过程控制操作员生理信号分析及功能状态建模[D];华东理工大学;2012年10魏庆国;基于运动想象的脑—机接口分类算法的研究[D];清华大学;2006年中国硕士学位论文全文数据库前10条1刘友友;基于多类运动感知脑电的异步脑—机接口的研究[D];山东大学;2010年2李窦哲;脑—机接口系统中脑电信号采集与特征识别[D];山西大学;2010年3张新;脑电信号分析在认知功能中的研究[D];重庆大学;2010年4赵建林;癫痫脑电信号识别算法及其应用[D];山东大学;2010年5王娟;慢性痛多通道脑电信号分析[D];燕山大学;2011年6张倩华;脑电信号的非广度熵分析[D];汕头大学;2004年7张道信;基于小波和独立分量分析的脑电信号处理[D];安徽大学;2002年8勾慧兰;1/f波电刺激前后脑电功率谱和复杂度的分析研究[D];河北科技大学;2010年9李县辉;脑电信号的小波相关与互信息分析[D];汕头大学;2003年10姜波;多自由度智能假手控制系统的研究[D];大连理工大学。

1VR技术的概念VR技术是由计算机生成的一种可以创建和体验虚拟世界的计算机系统。它通过视、听、触觉等作用于使用者,使之产生身临其境的交互视景的仿真。它综合了计算机图形、图像处理与模式识别,智能技术、传感技术、语言处理与音响技术、网络技术等多门科学,是现代仿真技术的进一步发展和应用。使用者借助必要的2设备自然地与虚拟环境中的对象进行交互作用、相互影响,产生身临其境的感觉和体验,使人机交互更加自然和谐。2VR技术的主要特征VR的主要特征是多感知性(multisensory)、沉浸感(immersion)、交互性(interactivity)、构想性(imagination)。这些特征使操作者能够进入一个由计算机生成的交互式三维虚拟环境中,与之产生互动,进行交流。通过参与者与仿真环境的相互作用,并借助人本身对所接触事物的感知和认知能力,启发参与者的思维,***获取环境所蕴含的各种空间信息和逻辑信息。多感知性(multisensory)所谓多感知是指除了一般计算机技术所具有的视觉感知之外,还有听觉感知、力觉感知、触觉感知、运动感知,甚至包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术,特别是传感技术的限制。沉浸性是虚拟现实技术最主要的特征,就是让用户成为并感受到自己是计算机系统所创造环境中的一部分;

各大院校利用虚拟现实技术还建立了与学科相关的虚拟实验室来帮助学生更好的学习。[2]3、在设计领域的应用虚拟现实技术在设计领域小有成就,例如室内设计,人们可以利用虚拟现实技术把室内结构、房屋外形通过虚拟技术表现出来,使之变成可以看的见的物体和环境。同时,在设计初期,设计师可以将自己的想法通过虚拟现实技术模拟出来,可以在虚拟环境中预先看到室内的实际效果,这样既节省了时间,又降低了成本。[2]4、虚拟现实在医学方面的应用医学专家们利用计算机,在虚拟空间中模拟出人体组织和***,让学生在其中进行模拟操作,并且能让学生感受到手术刀切入人体肌肉组织、触碰到骨头的感觉,使学生能够更快的掌握手术要领。而且,主刀医生们在手术前,也可以建立一个病人身体的虚拟模型,在虚拟空间中先进行一次手术预演,这样能够**提高手术的成功率,让更多的病人得以痊愈。[7]5、虚拟现实在***方面的应用由于虚拟现实的立体感和真实感,在***方面,人们将地图上的山川地貌、海洋湖泊等数据通过计算机进行编写,利用虚拟现实技术,能将原本平面的地图变成一幅三维立体的地形图,再通过全息技术将其投影出来,这更有助于进行***演习等训练,提高我国的综合国力。便会产生思维共鸣,造成心理沉浸,感觉如同进入真实世界。四川VR沉浸式虚拟现实运动分析

由于虚拟现实的立体感和真实感,在***方面,人们将地图上的山川地貌、海洋湖泊等数据通过计算机进行编写;天津影视虚拟现实实时动捕技术

而生命活动又是全世界人命关注的重点,每一种新技术的发现基本上都会应用到医学,所以虚拟现实技术自然而然就应到医学的研究中。早在1985年,美国国立医学图书馆就开始人体解剖图像数字化的研究,并由美国科罗拉多州立医学院将一具男性尸体和女性尸体分别做了1mm和,所得图像数据经压缩后,建立了“可视人”并于1995年出版发型了CD盘片。学生可以在计算机屏幕上对“可视人”进行冠状面和矢状面而对解剖,并可把局部的图像进行缩放。这一举措对解剖学的教学来说有着非同一般的意义。德国汉堡大学医用数学和计算机研究所进行的解剖三维可视化研究虚拟人体图谱,受试者的CT和MRT横截面映像或者组织学切片起空间模型。学生则可以自由地在三维人体空间进行各种操作。北卡罗来纳大学在1992年就开始进行超声图像与虚拟现实相结合的研究,把实时的超声扫描图像经信号变换传输到医生所戴的头盔显示器的,医生依赖于头盔的“看穿”能力。能看到超声图像映迭到病人身体上。1995年,在Internet上出现了“虚拟青蛙解剖”。“实验者”在网络上相互交流,发表自己的见解,甚至可以在屏幕上亲自动手进行解剖,用虚拟手术刀一层一层的分离青蛙,观察它的肌肉和骨骼组织。天津影视虚拟现实实时动捕技术

上海青瞳视觉科技有限公司是一家专注于红外光学位置追踪系统及虚拟现实平台研发的高科技企业,成立于2015年8月,公司位于上海大学科技园内,是国内光学动作捕捉系统生产商之一。公司由一支高素质的研发团队组建,主要成员来自于中科院自动化所、上海交通大学等国内知名高校且具有多年研发经验。目前公司具有完全自主知识产权、自行生产的光学动作捕捉设备和软件,成功研发并推出CMTracker动作捕捉、IQFace表情捕捉、VirtualHand手势捕捉、SLAM定位、VRWizard虚拟仿真平台等产品。系统服务于虚拟现实主题乐园,影视,游戏等泛娱乐等文化产业,也可应用于医疗、运动分析、工业仿真、机器人、无人机等领域。在VR和AR技术影响世界科技创新浪潮之际,团队专注于交互方案研究,为客户提供稳定,满意的交互方案。

信息来源于互联网 本站不为信息真实性负责