无锡激光熔覆表面处理

时间:2021年08月19日 来源:

近年来,石油、煤炭、钢铁、电力、航空航天各行业设备老化、工件磨损、报废,企业需要大量资金更换生产设备的零部件。同时,随着昆山质子激光设备再制造技术在石油、电力、航天航空等行业应用的推广及普及、智能高效激光再制造系统的成功开发,预计激光再制造市场可达到上千亿的行业规模。

昆山质子激光设备激光熔覆就是在基材表面添加熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝的方法,在基层表面形成与其为冶金结合的添料熔覆层.

它主要有2大用处.

1是修复,比如一根曲轴出现了裂痕,在以前是要报废的.但是用激光熔覆就可以修复.

2是节约成本,比如在钢上熔覆上钛合金可以使得工件达到钛的性能又可以减少工件的价格 质子激光熔覆技术的评述与展望。无锡激光熔覆表面处理

 通过在基材表面添加不同成分、性能的熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝的方法,在基材表面形成与其为冶金结合的具有特殊物理、化学或力学性能的添料熔覆层。

技术特点

1.激光熔覆层与基体为致密冶金结合,结合强度高,不脱落。

2.加工过程热影响区和热变形小,不改变基材内部金属性能。

3.可实现工件表面性能的定制,熔覆耐磨损、耐腐蚀、耐高温等特殊功能层。

4.可制备由底层、中间层及表层组成的各具特点的梯度功能熔覆层。

5.适合的材料很广,常见各类钢、合金钢及铸铁均可加工。

6.加工过程自动化控制,工期短,质量稳定。

7.低碳环保,无废气废水排放。 无锡截齿激光熔覆粉末种类激光熔覆技术在机械、石化行业中的应用。

激光熔覆层中气孔产生的原因及解决方法  

 激光熔覆层厚度可达3.5mm以上,研讨发现,熔覆层越厚,熔覆层的缺陷越多,熔覆层中常见的缺陷为气孔。激光熔覆中气孔发生的原因有:

1.在激光熔覆过程中,维护气体对激光熔覆维护欠安,使空气中氧和氢进入熔覆层(有时也有维护气成分)。

2.熔覆层中的低熔成分(包括粘结剂)与挥发出来的蒸气来不及分出,构成气孔。

3.粉末中含有水分,在熔覆过程中有机物和水蒸气来不及分出构成气孔。

4.激光工艺参数挑选不当,搭接率不对在层间构成气孔。

资料选项

  激光熔覆工艺的很多优势之一在于它能够与各种资料挑选兼容,能够选用金属丝或粉末形式;资料属性的选项简直是无止境的。

  粉末的长处

  资料挑选:粉末为改变合金成分供给了简直无限的潜力,答应运用碳化物和其他资料不行用的导线形式。

  线材的长处

  资料捕获:与粉末不同,当运用线材填充资料包覆时,不会出现浪费资料。

  较低的资料本钱:线材填充资料的本钱远远低于粉末形式的相同资料。

  不受重力的影响:线材不受重力影响,不受粉末的影响,因此能够完成不合适的包覆。

  运用热丝的2-5倍较高的堆积速率:在金属丝进入熔池之前对金属丝进行预热,可下降熔化填充资料所需的激光能量,然后运用相同的激光功率完成更高的堆积速率。


激光熔覆的应用和前景。

昆山质子激光设备有限公司按照材料添加方式的不同,激光熔覆的方法分为预置法和同步送粉法。预置法顾名思义就是预先将要涂层的材料通过喷涂或粘结等方式放置在预处理过的基材表面,然后通过激光束辐射进行重熔后再做适当的热处理;同步送粉则是在预处理后的熔覆基材表面,将粉末直接喷涂在激光辐射所形成的移动熔池上,涂层一次性成型。同步送粉是激光熔覆技术的发展趋势,可以充分利用激光能量,控制工艺参数,提高生产效率和覆层质量。但是同步送粉对粉末的颗粒粒度、流动性等方面也有要求,需要根据具体情况而定。激光淬火加工齿轮与常规热处理对比具有什么优势?无锡截齿激光熔覆粉末种类

激光熔覆再制造厂家、国内激光熔覆生产厂家。无锡激光熔覆表面处理

石油现场的工况条件比较恶劣,许多金属零部件长期工作在承受重载荷并伴有腐蚀摩擦和磨损的场合,致使它们过早地发生失效破坏而缩短其使用寿命。停产检查和更换新部件,既增加材料成本又影响油田生产,带来多方面的损失。各种常规表面处理技术,如涂料涂层、电镀、化学镀、电刷镀、热喷涂等,它们所生产的处理层与金属基体大多为机械式结合,结合力较差,不能胜任摩擦、磨损条件较为苛刻的场合。不仅如此,油田现场许多金属零部件摩擦副的磨损间隙处在近毫米的量级上,而常规表面技术的处理层较薄,很难对易损件进行表面修复,使这些技术的应用范围受限制。无锡激光熔覆表面处理

昆山质子激光设备有限公司成立于2019年12月,注册资金500万,是一家专业从事精密激光焊接研发和生产的设备制造商,同时为客户提供一整套激光工艺方案及相关配套设施


公司产品主要包括:激光焊接设备、激光切割设备、激光打标设备、激光清洗设备、激光熔覆设备及机器人自动化配套设备等。


公司引进哈尔滨工业大学机电学院“激光制造与增材制造”国家重点研发计划项目团队,开展基于声光图像信息的激光智能制造技术研究,通过激光制造过程中的声光图像信息与加工质量之间的对应关系,建立多种信号互补的激光加工质量与参数之间的映射关系,利用信号处理建立加工质量实时预测与参数自主调控策略,研制激光智能加工与检测一体化装备,解决光机电一体化的高效、高精度复合制造、三维在线监测与反馈控制、面向精密、复杂、微细、跨尺度制造需求的制造工艺技术,实现多种材料零部件的高效加工。



信息来源于互联网 本站不为信息真实性负责