北京纳米力学测试模块
有限元数值分析方面,Hurley 等分别基于解析模型和有限元模型两种数据分析方法测量了铌薄膜的压入模量,并进行了对比。Espinoza-Beltran 等考虑探针微悬臂的倾角、针尖高度、梯形横截面、材料各向异性等的影响,给出了一种将实验测试和有限元优化分析相结合,确定针尖样品面外和面内接触刚度的方法。有限元分析方法综合考虑了实际情况中的多种影响因素,精度相对较高。Kopycinska-Muller 等研究了AFAM 测试过程中针尖样品微纳米尺度下的接触力学行为。Killgore 等提出了一种通过检测探针接触共振频率变化对针尖磨损进行连续测量的方法。纳米力学测试对于材料科学研究至关重要,能够精确测量纳米尺度下的力学性质。北京纳米力学测试模块

用户可设计自定义的测试程序和测试模式:①FT-NTP纳米力学测试平台,是一个5轴纳米机器人系统,能够在绝大部分全尺寸的SEM中对微纳米结构进行精确的纳米力学测试。②FT-nMSC模块化系统控制器,其连接纳米力学测试平台,同步采集力和位移数据。其较大特点是该控制器提供硬。件级别的传感器保护模式,防止微力传感探针和微镊子的力学过载。③FT-nHCM手动控制模块,其配置的两个操控杆方便手动控制纳米力学测试平台。④带接线口的SEM法兰,实现模块化系统控制器和纳米力学测试平台的通讯。金属纳米力学测试厂商纳米机器人研发中,力学性能测试至关重要,以确保其在复杂环境中的稳定性。

谱学技术微纳米材料的化学成分分析主要依赖于各种谱学技术,包括紫外-可见光谱红外光谱、x射线荧光光谱、拉曼光谱、俄歇电子能谱、x射线光电子能谱等。另有一类谱仪是基于材料受激发的发射谱,是专为研究品体缺陷附近的原子排列状态而设计的,如核磁共振仪、电子自旋共振谱仪、穆斯堡尔谱仪、正电子湮灭等等。热分析技术,纳米材料的热分析主要是指差热分析、示差扫描量热法以及热重分析。三种方法常常相互结合,并与其他方法结合用于研究微纳米材料或纳米粒子的一些特 征:(1)表面成键或非成键有机基团或其他物质的存在与否、含量多少、热失重温度等(2)表面吸附能力的强弱与粒径的关系(3)升温过程中粒径变化(4)升温过程中的相转变情况及晶化过程。
纳米压痕获得的材料信息也比较丰富,既可以通过静态力学性能测试获得材料的硬度、弹性模量、断裂韧性、相变(畴变) 等信息,也可以通过动态力学性能测试获得被测样品的存储模量、损耗模量或损耗因子等。另外,动态纳米压痕技术还可以实现对材料微纳米尺度存储模量和损耗模量的模量成像(modulus mapping)。图1 是美国Hysitron 公司生产的TI-900 Triboindenter 纳米压痕仪的实物图。纳米压痕作为一种较通用的微纳米力学测试方法,目前仍然有不少研究者致力于对其方法本身的改进和发展。纳米力学测试可以用于评估纳米材料的耐久性和寿命,为产品的设计和使用提供参考依据。

本文中主要对当今几种主要材料纳观力学与纳米材料力学特性测试方法:纳米硬度技术、纳米云纹技术、扫描力显微镜技术等进行概述。纳米硬度技术。随着现代材料表面工程、微电子、集成微光机电 系统、生物和医学材料的发展试样本身或表面改性层厚度越来越小。传统的硬度测量已无法满足新材料研究的需要,于是纳米硬度技术应运而生。纳米硬度计是纳米硬度测量的主要仪器,它是一种检测材料微小体积内力学性能的测试仪器,包括压痕硬度和划痕硬度两种工作模式。由于压痕或划痕深度一般控制在微米甚至纳米尺度,因此该类仪器已成为电子薄膜、涂层、材料表面及其改性的力学性能检测的理想手段。它不需要将表层从基体上剥离,便可直接给出材料表层力学性质的空间分布。纳米力学测试可以帮助研究人员了解纳米材料的变形和断裂机制,为纳米材料的设计和优化提供指导。高精度纳米力学测试厂家直销
纳米力学测试可以应用于纳米材料的力学模拟和仿真,加速纳米材料的研发和应用过程。北京纳米力学测试模块
目前微纳米力学性能测试方法的发展趋势主要向快速定量化以及动态模式发展,测试对象也越来越多地涉及软物质、生物材料等之前较难测试的样品。另外,纳米力学测试方法的标准化也在逐步推进。建立标准化的纳米力学测试方法标志着相关测试方法的逐渐成熟,对纳米科学和技术的发展也具有重要的推动作用。绝大多数的纳米力学测试都需要复杂的样品制备过程。为了使样品制备简单化和人性化,FT-NMT03采用能够感知力的微镊子和不同形状的微力传感探针针尖来实现对微纳结构的精确提取、转移直至将其固定在测试平台上。总而言之,集中纳米操作以及力学-电学性能同步测试功能于一体的FT-NMT03能够满足几乎所有的纳米力学测试需求。北京纳米力学测试模块
上一篇: 湖南微纳米力学测试模块
下一篇: 江西纺织纳米力学测试模块