江西表面微纳米力学测试实验室

时间:2024年07月16日 来源:

采用磁力显微镜观察Sm2Co17基永磁材料表面的波纹磁畴和条状磁畴结构;使用摩擦力显微镜对计算机磁盘表面的摩擦特性进行试:利用静电力显微镜测量技术,依靠轻敲模式(Tapping mode)和抬举模式(Lift mode),用相位成像测量有机高分子膜-壳聚糖膜(CHI)的表面电荷密度空间分布等等除此之外,近年来,SPM还用于测量化学键、纳米碳管的强度,以及纳米碳管操纵力方面的测量。利用透射电子显微镜和原子力显微镜原位加载,观测单一纳米粒子链的力学属性和纳观断裂,采用扫描电镜、原子力显微镜对纳米碳管的拉伸过程及拉伸强度进行测等:基于原子力显微镜提出一种纳米级操纵力的同步测量方法,进而应用该方法,成功测量出操纵、切割碳纳米管的侧向力信息等。这些SFM技术为研究纳米粒子/分子、基体与操纵工具之间的相互作用提供较直接的原始力学信息和实验结果。测试设置需精确控制实验条件,以消除外部干扰,确保实验结果的准确性。江西表面微纳米力学测试实验室

江西表面微纳米力学测试实验室,纳米力学测试

有限元数值分析方面,Hurley 等分别基于解析模型和有限元模型两种数据分析方法测量了铌薄膜的压入模量,并进行了对比。Espinoza-Beltran 等考虑探针微悬臂的倾角、针尖高度、梯形横截面、材料各向异性等的影响,给出了一种将实验测试和有限元优化分析相结合,确定针尖样品面外和面内接触刚度的方法。有限元分析方法综合考虑了实际情况中的多种影响因素,精度相对较高。Kopycinska-Muller 等研究了AFAM 测试过程中针尖样品微纳米尺度下的接触力学行为。Killgore 等提出了一种通过检测探针接触共振频率变化对针尖磨损进行连续测量的方法。科研院纳米力学测试参考价随着纳米技术的不断发展,纳米力学测试技术也在不断更新换代,以适应更高精度的测试需求。

江西表面微纳米力学测试实验室,纳米力学测试

纳米硬度计主要由移动线圈、加载单元、金刚石压头和控制单元4部分组成。压头及其所在轴的运动由移动线圈控制,改变线圈电流的大小即可实现压头的轴向位移,带动压头垂直压向试件表面,在试件表面产生压力。移动线圈设计的关键在于既要满足较大量程的需要,还必须有很高的分辨率,以实现纳米级的位移和精确测量。压头载荷的测量和控制是通过应变仪来实现的。应变仪发出的信号再反馈到移动线圈上.如此可进行闭环控制,以实现限定载荷和压深痕实验。整个压入过程完全由微机自动控制进行。可在线测量位移与相应的载荷,并建立两者之间的关系压头大多为金刚石压头,常用的压头有Berkovich压头、Cube Corner压头和Conical压头。

AFAM 方法提出之后,不少研究者对方法的准确度和灵敏度方面进行了研究。Hurley 等分析了空气湿度对AFAM 定量化测量结果的影响。Rabe 等分析了探针基片对AFAM 定量化测量的影响。Hurley 等详细对比了AFAM 单点测试与纳米压痕以及声表面波谱方法的测试原理、空间分辨率、适用性及测试优缺点等。Stan 等提出一种双参考材料的方法,此方法不需要了解针尖的力学性能,可以在一定程度上提高测试的准确度。他们还提出了一种基于多峰接触的接触力学模型,在一定程度上可以提高测试的准确度。Turner 等通过严格的理论推导研究了探针不同阶弯曲振动和扭转振动模态的灵敏度问题。Muraoka提出一种在探针微悬臂末端附加集中质量的方法,以提高测试灵敏度。Rupp 等对AFAM测试过程中针尖样品之间的非线性相互作用进行了研究。在纳米尺度上,材料的力学性质往往与其宏观尺度下的性质有明显不同,因此纳米力学测试具有重要意义。

江西表面微纳米力学测试实验室,纳米力学测试

扫描探针声学显微术一般适用于模量范围在1~300 GPa 的材料。对于更软的材料,在测试过程中接触力有可能会对样品造成损害。基于轻敲模式的原子力显微镜多频成像技术是近年来发展的一项纳米力学测试方法。通过同时激励和检测探针多个频率的响应或探针振动的两阶(或多阶) 模态或探针振动的基频和高次谐波成分等,可以实现对被测样品形貌、弹性等性质的快速测量。只要是涉及探针两个及两个以上频率成分的激励和检测,均可以归为多频成像技术。由于轻敲模式下针尖施加的作用力远小于接触状态下的作用力,因此基于轻敲模式的多频成像技术适合于软物质力学性能的测量。在进行纳米力学测试时,需要注意避免外界干扰和噪声对测试结果的影响。江西表面微纳米力学测试实验室

纳米力学测试在航空航天领域,为超轻、强度高材料研发提供支持。江西表面微纳米力学测试实验室

一般力学原理包括:。能量和动量守恒原理;。哈密顿变分原理;。对称原理。由于研究的物体小,纳米力学也要考虑:。当物体尺寸和原子距离可比时,物体的离散性;。物体内自由度的多样性和有限性。。热胀落的重要性;。熵效应的重要性;。量子效应的重要性。这些原理可提供对纳米物体新异性质深入了解。新异性质是指这种性质在类似的宏观物体没有或者很不相同。特别是,当物体变小,会出现各种表面效应,它由纳米结构较高的表面与体积比所决定。这些效应影晌纳米结构的机械能和热学性质(熔点,热容等)例如,由于离散性,固体内机械波要分散,在小区域内,弹性力学的解有特别的行为。自由度大引起热胀落是纳米颗粒通过潜在势垒产生热隧道及液体和固体交错扩散的理由。小和热涨落提供了纳米颗粒布朗运动的基本理由。在纳米范围增加了热涨落重要性和结构熵,使纳米结构产生超弹性,熵弹性(熵力)和其它新弹性。开放纳米系统的自组织和合作行为中,结构熵也令人产生很大兴趣。江西表面微纳米力学测试实验室

信息来源于互联网 本站不为信息真实性负责