厦门在体光纤记录
在体光纤成像记录在自由活动动物的深部脑区实现光信号记录和神经细胞活性调控;高质量,亚细胞分辨率的成像;多波长成像,实现较多的钙离子成像(GCaMP or RCaMP),和光遗传实验,特定目标光刺激;在体光纤成像系统是模块化设计,使用者拥有很高的灵活性,可以随时根据研究需要对系统进行调整,比如调整光源,波长,滤光片,相机等。在深部脑区选定的特定神经细胞或部分获得连续的实验数据流,然后对单细胞提取密度轨迹。钙离子成像轨迹也可以被同步,与其他行为学实验(摄像拍摄,奖励设备等)同步时间标记。在体光纤成像记录在脑功能研究中具有较多的用途。厦门在体光纤记录

在体光纤成像记录相干断层扫描的局限性是单能扫描生物组织表面下1-2毫米的深度。这是由于深度越大,光线无散射的射出表面的比例就越小,以至于无法检测到。但是在检测过程中不需要样品制备过程,成像过程也不需要接触被成像的组织。更重要的是,设备产生的激光是对人眼安全的近红外线,因此几乎不会对组织造成伤害。使用光学反向散射或后向反射的测量成像组织的内部横截面微结构,像在体外在人的视网膜上,并在一个其他的病因斑块在透明,弱散射介质和不透明的。韶关在体实时监测光纤记录方案在体光纤成像记录调整光源,波长,滤光片,相机。

在体光纤成像记录可见光成像体内可见光成像包括生物发光与荧光两种技术。生物发光是用荧光素酶基因标记DNA,利用其产生的蛋白酶与相应底物发生生化反应产生生物体内的光信号;而荧光技术则采用荧光报告基因(GFP、RFP)或荧光染料(包括荧光量子点)等新型纳米标记材料进行标记,利用报告基因产生的生物发光、荧光蛋白质或染料产生的荧光就可以形成体内的生物光源。前者是动物体内的自发荧光,不需要激发光源,而后者则需要外界激发光源的激发。
动物体内很多物质在受到激发光激发后,会发出荧光,产生的非特异性荧光会影响到检测灵敏度。背景荧光主要是来源于皮毛和血液的自发荧光,皮毛中的黑色素是皮毛中主要的自发荧光源,其发光光线波长峰值在 500 一 520 nm 左右,在利用绿色荧光作为成像对象时,影响较为严重,产生的非特异性荧光会影响到检测灵敏度和特异性。动物尿液或其他杂质如没有及时打扫,成像中也会出现非特异性信号。由于各厂商的图像分析软件不同,实验数据分析方法也有区别。活的物体成像系统使用时,实验者考虑到非特异性杂信号,以及成像图片美观等方面,可能会调节信号的阈值,因此在在体光纤成像记录分析信号光子数或信号面积时,应考虑阈值的改变对实验结果的影响。正确选择 ROI 区域,可提高分析实验数据的准确性。在体光纤成像记录为实现成像,需要将光束聚焦成很小的光点。

在体光纤成像记录的目的是实时检测细胞的活性变化。基于钙离子浓度变化的荧光成像技术被较多用来记录神经元活性。在体光纤记录方法与传统的在体电生理记录方法有着不同的特点,光纤记录因其稳定、方便、易上手而应用较多。首先,将荧光蛋白表达在特定类型的神经元中,光纤记录可以实现细胞类型特异性的活性检测,而用电生理记录的方法记录特定类型的神经元的活性比较困难。其次,电生理记录容易受到环境中的电信号以及动物的行为动作影响,而光纤记录相对来说有着较强的抗干扰性能。然后,光纤记录相对稳定,可以很容易实现长时程的活性检测,例如动物的整个学习过程,而利用电生理记录实现起来则相对困难。较后,光纤记录用神经元群体的荧光强度变化来表征神经元整体的活性变化,不能反映单个神经元的活性,而电生理记录则能够检测到单个神经元的活性,具有更高的空间分辨率。在体光纤成像记录具有损耗低、成本低等优势。韶关在体实时监测光纤记录方案
在体光纤成像记录标记与药物代谢有关的基因。厦门在体光纤记录
随着荧光标记技术和光学成像技术的发展, 在体生物光学成像(In vivo optical imaging)已经发展 为一项崭新的分子、 基因表达的分析检测技术,在 生命科学、 医学研究及药物研发等领域得到较多应用, 主要分为在体生物发光成像(Bioluminescence imaging,BLI) , 和在体荧光成像,在体光纤成像记录(Fluorescence imaging)两种成像方式。 在体生物发光成像采用荧光素酶基因标记细胞或DNA, 在体荧光成像则采用荧光报告基团, 如绿色荧光蛋白, 红色荧光蛋白等进行标记 , 利用灵敏的光学检测仪器, 如电荷耦合摄像机 (CCD), 观测活的物体动物体内疾病的发生的发展、 坏掉的的生长及转移、 基因的表达及反应等生物学过程, 从而监测活的物体生物体内的细胞活动和基因行为。厦门在体光纤记录
上一篇: 苏州药理学膜片钳全细胞记录技术
下一篇: 福州细胞培养用胎牛血清供应商