重庆Chip-seq技术服务售后服务
cfDNA,cellfreeDNA,就是血液中游离的自身DNA,这些DNA多是从身体的细胞或者白血球破裂释放出来的,基本上都是无害的,不用多久会被自身清理掉。不过值得一提的是,当孕妇怀孕的时候,胎儿的DNA也会同时释放到母亲的血液里头去,这是当前火热的无创唐氏筛查的基础。通过抽取母亲的外周血测序分析其中的游离DNA就可以判断胎儿是否存在整个染色体或者大片段DNA的变异。有研究已经证实,**患者外周血中的cfDNA总量,要高于健康人。通过这一点,虽然不能武断的说cfDNA能成为**标志物,但是cfDNA的含量增多,能起到一个较好的提示作用,作为一个初筛的手段。基于cfDNA的液态活检中,尽管ctDNA在**诊断中的应用是当下cfDNA*****,研究**深入的分支。但是,cfDNA作为液态活检,不只是局限于**学。例如,有研究报道对于接受***移植手术的病人,可以通过监测术后外周血中具有捐献者基因特征,片段化的cfDNA含量变化,来评估移植***的排斥情况。 高通量BSP测序结果多种展示形式。重庆Chip-seq技术服务售后服务
Agilent甲基化芯片通过SurePrint芯片合成**技术,结合优化的探针设计及实验方法,可灵活进行甲基化研究,得到高灵敏度、高特异性、高重复性的结果。技术流程:1.将基因组DNA超声打断成400-500bpDN**段;2.加热变性并将变性后的单链DNA样品分成两份;3.其中一份单链DNA样品加入抗5'-甲基化胞嘧啶核苷抗体。使用免疫磁珠法分离样品中甲基化DN**段的抗体复合物,样品中其余的非甲基化DN**段被洗脱;4.纯化免疫共沉淀的DN**段;对MeDIP(Cy5)与Input(Cy3)样品分别进行标记;5.标记后的MeDIP与Input样品混合、变性,与芯片杂交;6.检测杂交信号并进行数据分析。芯片种类:Agilent**甲基化芯片,8x60K●和合作伙伴在Agilent公司定制的Promoter芯片。●绝大多数基因是针对基因启动子区域的CpG岛设计探针。●芯片上一共有4160个功能注释比较明确的基因,其中2128个和**发生有关系。●从功能上分,有256基因和细胞凋亡有关,1273个基因和信号传导有关,487个基因和压力和衰老有关。●特别适用于**甲基化研究。 重庆Chip-seq技术服务售后服务云生物提供测序服务。
甲基化敏感性高分辨率熔解曲线分析(MS-HRM)
通过熔解曲线分析可以将单碱基序列的差异转变成熔解曲线的差异,因此DNA样本经过亚硫酸氢盐处理后,甲基化与未甲基化DNA会存在序列差异,这种差异可通过熔解曲线分析来发现。使用该方法进行甲基化分析*需一对引物,相对简单,不过这种方法对仪器的要求颇高,需要带HRM模块的荧光定量PCR仪,并且在进行实时定量PCR过程中,需要使用饱和的荧光染料。利用MS-HRM技术进行甲基化检测只能对检测片段整体甲基化情况进行分析,并不能明确每个CpG位点的甲基化状态。因此这种技术适用于大量样本的检测,筛选出感兴趣的CPG位点,然后利用其他方法进行单个位点的精确检测及甲基化程度的精确定量。
亚硫酸氢盐测序PCR(BSP)
这种方法一度被认为是DNA甲基化分析的金标准。它的过程如下:经过亚硫酸氢盐处理后,设计引物进行PCR扩增目的片段,并对PCR产物进行克隆测序,将序列与未经处理的序列进行比较,判断CpG位点是否发生甲基化。这种方法可靠,且精确度高,能明确目的片段中每一个CpG位点的甲基化状态,但因为涉及到测序,其结果准确但要求克隆时所挑克隆较多,操作繁琐,不易大批量操作。另外,甲基化程度的定量依赖于挑选克隆的数目,因此这种方法只能算得上是一种半定量的技术方法。
目前一般会先用BSP找到甲基化位点,然后根据甲基化位点设计MSP引物,进行相应PCR条件摸索,以用于大量样本的筛选。 FFPE样本只需要室温运输。
相比之下,VeraCode GoldenGate甲基化分析技术更适合中通量的筛选及验证研究,它以以矩阵微珠芯片(Sentrix Array Matrix(SAM))形式分析48至384个用户指定的CpG位点。首先,将亚硫酸氢盐处理的基因组DNA 与分析oligo混合,oligo与未甲基化位点的U互补,或者与甲基化位点的C互补。杂交之后,引物延伸,并连接上位点特异的oligo来产生通用 PCR的模板。***,用标记的PCR引物生成可检测的产物。据Illumina的产品专家介绍,其产品的**优势在于单个CpG位点的分辨率。其它分析将甲基化定位在一段区域,而通过Illumina分析,你能精确测定某个CpG位点的甲基化水平。850K芯片为半金标准,价格低,分析简单,较为适合EWAS类型的课题。重庆Chip-seq技术服务售后服务
云生物提供甲基化服务。重庆Chip-seq技术服务售后服务
RIP-seqRNAImmunoprecipitation是研究细胞内蛋白与RNA相互作用的技术,是了解转录后调控网络动态过程的有力工具,能更有效地发现miRNA的调节靶点。这种技术运用针对目标蛋白的抗体把相应的RNA-蛋白复合物沉淀下来,然后经过分离纯化就可以对结合在复合物上的RNA进行测序分析。RIP可以看成是普遍使用的染色质免疫沉淀RIP技术的类似应用,但由于研究对象是RNA-蛋白复合物而不是DNA-蛋白复合物,因此RIP实验的优化条件与ChIP实验并不相同。RIP实验下游结合二代测序技术称为RIP-seq,通过高通量测序和分析,深度解析与目标蛋白相互结合的RNA的区域或种类和相互作用强弱。应用领域1.高效获取蛋白所结合的RNA,在全转录组范围得到与蛋白有相互作用的RNA,包括mRNA、lncRNA、circRNA、microRNA。2.准确获取蛋白结合RNA的特征,通过RNA结合区域的富集得到蛋白结合的RNA位置。3.通过motif分析获取蛋白结合序列的偏好性。技术优势***的确定蛋白质在细胞自然状态下与RNA结合的研究手段,可以有效的鉴定一个蛋白是否是RNA结合蛋白以及RNA结合蛋白与哪些RNA直接作用,并确定其结合位点。,得知相互作用RNA的类型。,可通过分析可得知与蛋白作用的RNA序列。 重庆Chip-seq技术服务售后服务